We are pleased to provide you with the 2016 Water Quality Report. This report is designed to inform you of the quality of water we delivered to you over the past year. Our goal is to provide you a safe and dependable supply of drinking water.

Our water source is the groundwater from wells located in Lexington County. The South Carolina Department of Health & Environmental Control (DHEC) has completed the Source Water Assessment Plan (SWAP) for Lake Village. The relative susceptibility rating of each source was ranked as having high susceptibility. The rating is determined by identifying potential pollution sources near each well. It is important to understand that a susceptibility rate of “high” does not imply poor water quality, only the systems’ potential to become contaminated by potential pollution sources in the assessment area.

The Source Water Assessment Plan can be made available by providing the system ID # found at the top of this report to Mr. Jim Ferguson at (803) 898-3531 or e-mail at fergusjm@dhec.sc.gov.

Message from Rick Durham, President

Dear Carolina Water Service, Inc. Customer,

I am pleased to share your Annual Water Report for 2016. As the local President of your community water utility, this direct communication is part of our continuing effort to emphasize to our customers that we understand “water is local.”

Our team is committed to providing safe, reliable and cost effective service to our customers. All of our employees share in our commitment to act with integrity, protect the environment, and enhance the local community.

We are proud to share this report which is based on water quality testing through December 2016. We continually strive to supply water that meets or exceeds all federal and state water quality regulations at your tap.

These results don’t happen by chance. A dedicated local team of water quality experts is working in the community everyday ensuring that our customers are our top priority and providing the highest quality drinking water and service - now and in the years to come.

Best regards,

Rick Durham

Help put a stop to the more than 1 trillion gallons of water lost annually due to household leaks. These easy-to-fix leaks waste the average family the amount of water used to fill a backyard swimming pool each year. Plumbing leaks can run up your family’s water bill an extra 10 percent plus, but chasing down these water- and money-wasting culprits is as easy as 1—2—3.

Simply check, twist, and replace your way to fewer leaks and more water savings:

- **Check** for silent leaks in the toilet with a few drops of food coloring in the tank, and check your sprinkler system for winter damage.
- **Twist** faucet valves; tighten pipe connections; and secure your hose to the spigot. For additional savings, twist a WaterSense labeled aerator onto each bathroom faucet to save water without noticing a difference in flow. They can save a household more than 500 gallons each year—equivalent to the amount water used to shower 180 times!
- **Replace** old plumbing fixtures and irrigation controllers that are wasting water with WaterSense labeled models that are independently certified to use 20 percent less water and perform well.

The Safe Drinking Water Act was passed in 1974 due to congressional concerns about organic chemical contaminants in drinking water and the inefficient manner by which states supervised and monitored drinking water supplies. Congress’ aim was to assure that all citizens served by public water systems would be provided high quality water. As a result, the EPA set enforceable standards for health-related drinking water contaminants. The Act also established programs to protect underground sources of drinking water from contamination.
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:
(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
(E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water by calling the EPA’s Safe Drinking Water Hotline.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Carolina Water Service is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may want to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water that remains stationary within your home plumbing for extended periods of time can leach out of pipes joined with lead-containing solder as well as brass fixtures or galvanized pipes. Flushing fixtures has been found to be an effective means of reducing lead levels. The flushing process could take from 30 seconds to 2 minutes or longer until it becomes cold or reaches a steady temperature. Faucets, fittings, and valves, including those advertised as "lead-free," may contribute lead to drinking water. Consumers should be aware of this when choosing fixtures and take appropriate precautions. Visit the NSF Web site at www.nsf.org to learn more about lead-containing plumbing fixtures.
Understanding This Report:
In order to help you understand this report, we want you to understand a few terms and abbreviations that are contained in it.

- **Action level (AL)** - Action level is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
- **EPA** – Environmental Protection Agency
- **Maximum contaminant level (MCL)** - The maximum contaminant level is the highest level of a contaminant that is allowed in drinking water. MCL’s are set as close as feasible using the best available treatment technology.
- **Maximum contaminant level goal (MCLG)** - The “goal” is the level of a contaminant in drinking water below which there is no known or expected health risk. MCLG’s allow for a margin of safety.
- **Maximum Residual Disinfectant Level (MRDL)** – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- **Maximum Residual Disinfectant Level Goal (MRDLG)** – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- **N/A** – This means not applicable for this item.
- **ND** – This means not detected and indicates that the substance was not found by laboratory analysis.
- **Parts per million (ppm) or milligrams per liter (mg/L)** - One part per million corresponds to one minute in two years or a single penny in $10,000.
- **Parts per billion (ppb) or micrograms per liter (ug/L)** - One part per billion corresponds to one minute in two years or a single penny in $10,000,000.
- **Picocuries per liter (pCi/L)** – Picocuries per liter is a measure of radioactivity in the water.
- **Running Annual Average (RAA)** – Calculated running annual average of all contaminant levels detected.
- **Treatment Technique (TT)** - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Carolina Water Service, Inc. routinely monitors your drinking water according to Federal and State laws. The table below lists the drinking water substances that we detected in the last round of sampling for the particular contaminant group. The presence of contaminants does not necessarily indicate that water poses a health risk. Based on certain criteria, some systems may be allowed to monitor for regulated contaminants less often than once a year. In this case, the table will include the date and results of the most recent sampling.

If You Have Questions Or Want To Get Involved?
Carolina Water Service, Inc. does not have regularly scheduled public meetings. Please contact our Customer Service Department at (800) 367-4314 should you have any questions. We ask that all our customers help us protect our water sources which are the heart of our community, our way of life and our children's future.

Water Quality Test Results

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation Y/N</th>
<th>Date Collected</th>
<th>Level Detected</th>
<th>Range of Detects or # of Samples Exceeding MCL/AL</th>
<th>Unit of Measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactive Contaminants (source)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>N</td>
<td>2016</td>
<td>3.6</td>
<td>3.5 - 3.6</td>
<td>ug/L</td>
<td>0</td>
<td>30</td>
<td>Erosion of natural deposits.</td>
</tr>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>N</td>
<td>2014</td>
<td>0.37</td>
<td>0 - 0.37</td>
<td>ppb</td>
<td>5</td>
<td>5</td>
<td>Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries & paints.</td>
</tr>
<tr>
<td>Barium</td>
<td>N</td>
<td>2014</td>
<td>0.18</td>
<td>0 - 0.18</td>
<td>ppm</td>
<td>2</td>
<td>2</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.</td>
</tr>
<tr>
<td>Nitrate (as Nitrogen)</td>
<td>N</td>
<td>2016</td>
<td>0.28</td>
<td>0.072 - 0.28</td>
<td>Ppb</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.</td>
</tr>
<tr>
<td>Fluoride</td>
<td>N</td>
<td>2014</td>
<td>0.19</td>
<td>0.12 - 0.19</td>
<td>ppm</td>
<td>4</td>
<td>4</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer & aluminum factories.</td>
</tr>
<tr>
<td>Lead (90th percentile)</td>
<td>Y**</td>
<td>2016</td>
<td>18</td>
<td>2</td>
<td>ppb</td>
<td>0</td>
<td>AL=15</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits;</td>
</tr>
<tr>
<td>Copper (90th percentile)</td>
<td>N</td>
<td>2016</td>
<td>0.52</td>
<td>0</td>
<td>ppm</td>
<td>1.3</td>
<td>AL=1.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.</td>
</tr>
<tr>
<td>Disinfection By-Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Haloacetic Acids (HAAS)</td>
<td>N</td>
<td>2014</td>
<td>2.16</td>
<td>1.79 - 2.16</td>
<td>ppb</td>
<td>0</td>
<td>60</td>
<td>By-product of drinking water chlorination.</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHM)</td>
<td>N</td>
<td>2014</td>
<td>15.37</td>
<td>10.24 - 15.37</td>
<td>ppb</td>
<td>0</td>
<td>80</td>
<td>By-product of drinking water chlorination.</td>
</tr>
<tr>
<td>Chlorine</td>
<td>N</td>
<td>2016</td>
<td>RAA 1.33</td>
<td>1.11 - 1.56</td>
<td>ppm</td>
<td>MRDLG = 4</td>
<td>MRDL = 4</td>
<td>Water additive used to control microbes.</td>
</tr>
</tbody>
</table>

** Customers were notified when the water system exceeded the 90th percentile action level for lead. Additional sampling is being conducted on an increased frequency to continue monitoring the situation. Because the major contributor to lead in drinking water is the materials used in home plumbing, lead levels are generally site specific. If the water hasn’t been used for several hours, run the water for at least 30 seconds to 2 minutes or longer while it becomes cold or reaches a steady temperature. **Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. **Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure. **