Message from Steve Lubertozzi, President

Dear Utilities Services of Illinois, Inc. Customers,

I am pleased to share your Annual Water Quality Report for 2017. This report is designed to inform you of the quality of water we delivered to you over the past year. As the local President of your community water utility, we fully appreciate our role in the local community. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources.

Our team is committed to providing safe, reliable and cost effective service to our customers. All of our employees share in our commitment to act with integrity, protect the environment, and enhance the local community.

We are proud to share this report which is based on water quality testing through December 2017. We continually strive to supply water that meets or exceeds all federal and state water quality regulations.

Our dedicated local team of water quality experts is working in the community everyday ensuring that you, our customer, are our top priority and that we are providing the highest quality service - now and in the years to come.

Best regards,

[Signature]

Source of Drinking Water

The source of drinking water used by Lake Killarney is ground water. Lake Killarney receives its water from ground water sources from the Silurian shallow bedrock.

Source Water Assessment (SWA)

The source water assessment for our supply has been completed by the Illinois EPA. To view a summary version of the completed SWA, including: Importance of Source Water; Susceptibility to Contamination Determination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl or by contacting the Groundwater Section of the Illinois EPA at 217-785-4787.

To determine Killarney's susceptibility to groundwater contamination, the following document was reviewed: a Well Site Survey, published in 1990 by the Illinois EPA.

Based on the information obtained in this document, there are four potential sources of groundwater contamination that could pose a hazard to groundwater utilized by Killarney's Community Water Supply. These include a fire station and three restaurant/food services. In addition, information provided by the Leaking Underground Storage Tank and Remedial Project Management Sections of the Illinois EPA indicates one site with on-going remediation that might be of concern.

The susceptibility determination for this community water supply is based on a number of criteria including monitoring conducted at the wells, monitoring conducted at the entry point to the distribution system, and available hydrogeologic data on the wells.

The Illinois EPA has determined that the Killarney's Community Water Supply's source water is not susceptible to contamination. The land use within the wellhead protection area was analyzed as part of this susceptibility determination. This land use includes residential properties and open space.

Visit us online at www.uiwater.com/illinois to view the Water Quality Reports. Also visit our website for e-billing sign up, water conservation tips and other educational material.

We ask that all our customers help us protect our water sources which are the heart of our community, our way of life and our children's future.
EPA Wants You To Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

A. Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

B. Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

C. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

D. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

E. Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

What measures are in place to ensure water is safe to drink?

To ensure that tap water is safe to drink, U.S. EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. FDA regulations establish limits for contaminants in bottled water that shall provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects may be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 800-426-4791.

Special notice from EPA for the elderly, infants, cancer patients and people with HIV/AIDS or other immune system problems

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Information Concerning Lead in Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Utilities Services of Illinois, Inc. is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Water that remains stationary within your home plumbing for extended periods of time can leach lead out of pipes joined with lead-containing solder as well as brass fixtures or galvanized pipes. Flushing fixtures has been found to be an effective means of reducing lead levels. The flushing process could take from 30 seconds to 2 minutes or longer until it becomes cold or reaches a steady temperature. Faucets, fittings, and valves, including those advertised as "lead-free," may contribute lead to drinking water. Consumers should be aware of this when choosing fixtures and take appropriate precautions. Visit the NSF Web site at www.nsf.org to learn more about lead-containing plumbing fixtures.

If You Have Questions Or Want To Get Involved

Utilities Services of Illinois, Inc. does not hold regular public meetings. If you have any questions about this report or your water utility, please contact customer service at 1-800-831-2359.

Drain Disposal Information

Sewer overflows and backups can cause health hazards, damage home interiors, and threaten the environment. A common cause is sewer pipes blocked by grease, which gets into the sewer from household drains. Grease sticks to the insides of pipes. Over time, the grease can build up and block the entire pipe. Help solve the grease problem by keeping this material out of the sewer system in the first place:

- Never pour grease down sink drains or into toilets. Scrape grease into a can or trash.
- Put strainers in sink drains to catch food scraps / solids for disposal.

Prescription Medication and Hazardous Waste

Household products such as paints, cleaners, oils, and pesticides, are considered to be household hazardous waste. Prescription and over-the-counter drugs poured down the sink or flushed down the toilet can pass through the wastewater treatment system and enter rivers and lakes (or leach into the ground and seep into groundwater in a septic system). Follow the directions for proper disposal procedures. Do not flush hazardous waste or prescription and over-the-counter drugs down the toilet or drain. They may flow downstream to serve as sources for community drinking water supplies. Many communities offer a variety of options for conveniently and safely managing these items. For more information, visit the EPA website at: www.epa.gov/hw/household-hazardous-waste-hhw.
Help Protect our Resources
Help put a stop to the more than 1 trillion gallons of water lost annually nationwide due to household leaks. These easy to fix leaks waste the average family the amount of water used to fill a backyard swimming pool each year. Plumbing leaks can run up your family’s water bill an extra 10 percent or more, but chasing down these water and money wasting culprits is as easy as 1—2—3. Simply check, twist, and replace your way to fewer leaks and more water savings:

⇒ Check for silent leaks in the toilet with a few drops of food coloring in the tank, and check your sprinkler system for winter damage.

⇒ Twist faucet valves; tighten pipe connections; and secure your hose to the spigot. For additional savings, twist a WaterSense labeled aerator onto each bathroom faucet to save water without noticing a difference in flow. They can save a household more than 500 gallons each year—equivalent to the amount water used to shower 180 times!

⇒ Replace old plumbing fixtures and irrigation controllers that are wasting water with WaterSense labeled models that are independently certified to use 20 percent less water and perform well.

Key to Water Quality Terms
In order to help you understand this report, we want you to understand a few terms and abbreviations that are contained in it.

• Action level (AL) - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

• ALG - The level of a contaminant in drinking water below which there is no known or expected risk to health. ALG’s allow for a margin of safety

• Avg - Regulatory compliance with some MCLs is based on running annual average of monthly samples

• Maximum contaminant level (MCL) - The maximum contaminant level is the highest level of a contaminant that is allowed in drinking water. MCL’s are set as close to the MCLG’s as feasible using the best available treatment technology.

• Maximum contaminant level goal (MCLG) - The “goal” is the level of a contaminant in drinking water below which there is no known or expected health risk. MCLG’s allow for a margin of safety.

• Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

• Maximum Residual Disinfectant Goal (MRDLG): The Level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

• Not-Applicable (N/A) – Information not applicable/not required for that particular water system or for that particular Rule.

• Parts per million (ppm) or milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in $10,000.

• Parts per billion (ppb) or micrograms per liter (ug/l) - one part per billion corresponds to one minute in 2,000 years or a single penny in $10,000,000.

• Picocuries per liter (pCi/L) – picocuries per liter is a measure of the radioactivity in water.

• Treatment Technique (TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Utilities Services of Illinois, Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws. Unless otherwise noted, the tables that follow show the results of our monitoring for the period of January 1st to December 31st, 2017. As authorized and approved by EPA, the State has reduced monitoring requirements for certain contaminants to less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of our data [e.g., for organic contaminants], though representative, are more than one year old. Data obtained before January 1, 2017, and presented in this report are from the most recent testing done in accordance with the laws, rules and regulations.

Note: The Environmental Protection Agency (EPA) requires monitoring of over 80 drinking water contaminants. Those contaminants listed in the table below are the only contaminants detected in your drinking water.

Water Quality Test Results

Lead and Copper

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Date Sampled</th>
<th>MCLG (ALG)</th>
<th>Action Level (AL)</th>
<th>90th Percentile</th>
<th># Sites Over AL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>2016</td>
<td>1.3</td>
<td>1.3</td>
<td>0.482</td>
<td>0</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems</td>
</tr>
<tr>
<td>Lead</td>
<td>2016</td>
<td>0</td>
<td>15</td>
<td>4.8</td>
<td>0</td>
<td>ppb</td>
<td>N</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Disinfectants & Disinfection Byproducts

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>12/31/2017</td>
<td>1.1</td>
<td>0.4 - 1.23</td>
<td>MRDLG=4</td>
<td>MRDL=4</td>
<td>ppm</td>
<td>N</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Total Trihalomethanes [TTHMs]</td>
<td>2017</td>
<td>11</td>
<td>10.7 - 10.7</td>
<td>No goal for the total</td>
<td>80</td>
<td>ppb</td>
<td>N</td>
<td>By-product of drinking water chlorination</td>
</tr>
</tbody>
</table>
Water Quality Test Results

<table>
<thead>
<tr>
<th>Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>7/29/2015</td>
<td>1.2</td>
<td>1.1 – 1.2</td>
<td>0</td>
<td>10</td>
<td>ppb</td>
<td>N</td>
<td>Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production waste</td>
</tr>
<tr>
<td>Barium</td>
<td>7/29/2015</td>
<td>0.081</td>
<td>0.075 – 0.081</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>N</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride</td>
<td>7/29/2015</td>
<td>0.882</td>
<td>0 – 0.882</td>
<td>4</td>
<td>4</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td>Sodium</td>
<td>7/29/2015</td>
<td>27</td>
<td>16 - 27</td>
<td>N/A</td>
<td>N/A</td>
<td>ppm</td>
<td>N</td>
<td>Erosion from naturally occurring deposits; used in water softener regeneration</td>
</tr>
<tr>
<td>State Regulated Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>2017</td>
<td>2.8</td>
<td>1 – 5.6</td>
<td>N/A</td>
<td>1.0</td>
<td>ppm</td>
<td>N</td>
<td>Erosion from naturally occurring deposits</td>
</tr>
<tr>
<td>Manganese</td>
<td>7/29/2015</td>
<td>49</td>
<td>27 - 49</td>
<td>150</td>
<td>150</td>
<td>ppb</td>
<td>N</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Zinc</td>
<td>7/29/2015</td>
<td>0.049</td>
<td>0 – 0.049</td>
<td>5</td>
<td>5</td>
<td>ppm</td>
<td>N</td>
<td>Naturally occurring; discharge from metal factories</td>
</tr>
</tbody>
</table>

Water Quality Footnotes:

Iron: This contaminant is not currently regulated by USEPA. However, the state has set an MCL for this contaminant for supplies serving a population of 1000 or more. *Excessive iron in water may cause staining of laundry & plumbing fixtures & may accumulate as deposits in the distribution system.* The utility treats the water with an iron sequestering agent to alleviate this aesthetic characteristic.

Manganese: This contaminant is not currently regulated by USEPA. However, the state has set an MCL for this contaminant for supplies serving a population of 1000 or more.

Sodium: There is not a state or federal MCL for sodium. Monitoring is required to provide information to consumers and health officials that are concerned about sodium intake due to dietary precautions. If you are on a sodium-restricted diet, you should consult a physician about this level of sodium in the water.

Zinc: This contaminant is not currently regulated by USEPA. However, the state has set an MCL for this contaminant and therefore monitoring is required.

Violations

In 2017, Utilities Services of Illinois, Inc. performed all required monitoring for contaminants and did not exceed any allowable levels of these contaminants. In addition, Utilities Services of Illinois, Inc. received no violations and was in compliance with applicable testing and reporting requirements.